f(i) | f(j) | f(k) | ||
A= | 0 | 0 | 1 | i |
1 | 0 | −3 | j | |
0 | 1 | 3 | k |
L1 → (L1 + λ L2) | |||||||
Dét(A−λI)= | −λ | 0 | 1 | = | 0 | −λ2 | 1 − 3λ |
1 | −λ | −3 | 1 | −λ | −3 | ||
0 | 1 | 3 − λ | 0 | 1 | 3 − λ |
Dét(A − λ I) = (−1) | −λ2 | 1 − 3λ |
1 | 3 − λ |
P à inverser | I | transformation de la ligne |
||||||
P= | 1 | −1 | 1 | I= | 1 | 0 | 0 | L1 → L1 |
−2 | 1 | 0 | 0 | 1 | 0 | L2 → −(L2 + 2 L1) | ||
1 | 0 | 0 | 0 | 0 | 1 | L3 → L3 − L1 |
1 | −1 | 1 | 1 | 0 | 0 | L1 → L1 + L2 | ||
0 | 1 | −2 | −2 | −1 | 0 | L2 → L2 | ||
0 | 1 | −1 | −1 | 0 | 1 | L3 → L3 − L2 |
1 | 0 | −1 | −1 | −1 | 0 | L1 → L1 + L3 | ||
0 | 1 | −2 | −2 | −1 | 0 | L2 → L2 + 2 L3 | ||
0 | 0 | 1 | 1 | 1 | 1 | L3 → L3 |
I= | 1 | 0 | 0 | P−1= | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 2 | ||
0 | 0 | 1 | 1 | 1 | 1 |
t(X1) | t(X2) | t(X3) | ||
T= | λ | 1 | 0 | X1 |
0 | λ | 1 | X2 | |
0 | 0 | λ | X3 |
T | = | D | + | N | |||||||
T= | λ | 1 | 0 | = | λ | 0 | 0 | + | 0 | 1 | 0 |
0 | λ | 1 | 0 | λ | 0 | 0 | 0 | 1 | |||
0 | 0 | λ | 0 | 0 | λ | 0 | 0 | 0 |
N= | 0 | 1 | 0 | ⇒ N2= | 0 | 0 | 1 | ⇒ N3= | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tn= | Cn0 λn | Cn1 λn−1 | Cn2 λn−2 |
0 | Cn0 λn | Cn1 λn−1 | |
0 | 0 | Cn0 λn |
Tn= | λn | n λn−1 | n(n−1)/2 λn−2 |
0 | λn | n λn−1 | |
0 | 0 | λn |