f(x) | F(x) | F(0) = 0 |
sin(x) | −cos(x) + k | k = cos(0) = 1 |
−cos(x) + 1 | −sin(x) + x + k | k = sin(0) = 0 |
−sin(x) + x | cos(x) + x2/2 + k | k = −cos(0) = −1 |
cos(x) + x2/2 − 1 | sin(x) + x3/3! − x + k | k = −sin(0) = 0 |
sin(x) + x3/3! − x | −cos(x) + x4/4! − x2/2 + k | k = cos(0) = 1 |
−cos(x) + x4/4! − x2/2 + 1 | −sin(x) + x5/5! − x3/3! + x + k | k = sin(0) = 0 |
−sin(x) + x5/5! − x3/3! + x | cos(x) + x6/6! − x4/4! + x2/2 + k | k = −cos(0) = −1 |
cos(x) + x6/6! − x4/4! + x2/2 − 1 | sin(x) + x7/7! − x5/5! + x3/3! − x + k | k = −sin(0) = 0 |
sin(x) + x7/7! − x5/5! + x3/3! − x |
fonction | étude de la fonction sur [−π/2, π/2] | |||||
−π/2 | 0 | π/2 | ||||
f8(x) = sin(x) | variation | −1 | ↗ | 0 | ↗ | +1 |
signe | − | 0 | + | |||
f7(x) = −cos(x) + 1 | variation | +1 | ↘ | 0 | ↗ | +1 |
signe | + | 0 | + | |||
f6(x) = −sin(x) + x | variation | −0.57 | ↗ | 0 | ↗ | +0.57 |
signe | − | 0 | + | |||
f5(x) = cos(x) + x2/2 − 1 | variation | +0.23 | ↘ | 0 | ↗ | +0.23 |
signe | + | 0 | + | |||
f4(x) = sin(x) + x3/3! − x | variation | −0.075 | ↗ | 0 | ↗ | +0.075 |
signe | − | 0 | + | |||
f3(x) = −cos(x) + x4/4! − x2/2 + 1 | variation | +0.020 | ↘ | 0 | ↗ | +0.020 |
signe | + | 0 | + | |||
f2(x) = −sin(x) + x5/5! − x3/3! + x | variation | −0.005 | ↗ | 0 | ↗ | +0.005 |
signe | − | 0 | + | |||
f1(x) = cos(x) + x6/6! − x4/4! + x2/2 − 1 | variation | +0.001 | ↘ | 0 | ↗ | +0.001 |
signe | + | 0 | + | |||
f(x) = sin(x) + x7/7! − x5/5! + x3/3! − x | variation | −0.0002 | ↗ | 0 | ↗ | +0.0002 |
signe | − | 0 | + |