Eq.1 | a1 | x | + | b1 | y | = | c1 | | × (+a2) | |
Eq.2 | a2 | x | + | b2 | y | = | c2 | | × (−a1) |
Eq.1 | a1a2 | x | + | b1a2 | y | = | c1a2 | |
Eq.2 | −a2a1 | x | + | −b2a1 | y | = | −c2a1 | |
|
||||||||
Eq.2bis | (b1a2 − b2a1) | y | = | c1a2 − c2a1 |
D'où | : | y = (c1a2 − c2a1) / (b1a2 − b2a1) |
De même on obtient | : | x = (c1b2 − c2b1) / (a1b2 − a2b1) |
A1 = | ( a1 ) | A2 = | ( b1 ) | C = | ( c1 ) | X = | ( x ) | |||
( a2 ) | ( b2 ) | ( c2 ) | ( y ) |