| fonction f(x) | → | dérivée f '(x) |
| a | → | 0 |
| x | → | 1 |
| a x | → | a |
| a x + b | → | a |
| x2 | → | 2 x |
| x3 | → | 3 x2 |
| xn | → | n xn−1 |
| 1/x = x−1 | → | −1/x2 = −x−2 |
| 1/xn = x−n | → | −n/xn+1 = −nx−n−1 |
| √x = x1/2 | → | 1/(2√x) = (1/2)x−1/2 |
| ex | → | ex |
| ln(x) | → | 1/x |
| sin(x) | → | cos(x) |
| cos(x) | → | −sin(x) |
| tg(x) | → | 1/cos2(x) |
| fonction f(u(x)) | → | dérivée df/dx=f '(u).u' |
| f(u) | → | f '(u)×u' |
| a u | → | a u' |
| u2 | → | 2uu' |
| u3 | → | 3u2u' |
| un | → | nun−1u' |
| 1/u = u−1 | → | −u'/u2 = −u−2u' |
| √u = u1/2 | → | u'/(2√u) = (1/2)u−1/2u' |
| eu | → | u'eu |
| ln(u) | → | u'/u |
| fonction f(x) | → | dérivée f '(x) |
| u + v | → | u' + v' |
| u v | → | u' v + u v' |
| u/v = u×(v−1) | → | (u' v − u v')/v2 = u'v−1 − uv'v−2 |
| fonction f(x) | → | dérivée f '(x) |
| ax+b | → | a |
| (ax+b)3 | → | 3 a (ax+b)2 |
| eax+b | → | a eax+b |
| ln(ax+b) | → | a/(ax+b) |
| cos(ax+b) | → | −a sin(ax+b) |